炼铁实习报告

时间:2024-06-18 05:01:09
炼铁实习报告

炼铁实习报告

随着社会不断地进步,报告的适用范围越来越广泛,我们在写报告的时候要避免篇幅过长。一听到写报告马上头昏脑涨?下面是小编为大家整理的炼铁实习报告,仅供参考,大家一起来看看吧。

炼铁实习报告1

一、实习时间

200X年X月X日—X月X日

二、实习地点

武汉钢铁公司炼铁厂五号高炉、毕业设计办公室。

三、实习目的

(1)对高炉结构、主要的技术指标及任务措施的认识了解。

大学的最后一个学期,我们在老师的带领下,到武汉钢铁公司炼铁厂五号高炉进行了为期两周的毕业实习。在实习期间,对其高炉结构、主要的技术指标及任务措施做了全面的了解。

武钢股份有限公司炼铁厂现有六座现代化大型高炉,是我国生铁的重要生产基地之一。炼铁厂 1958年9月13日建成投产。经过49年的建设、改造和发展,年生产规模达到1000万吨。炼铁厂5号高炉是武钢自行投资建成的一座集国内外十余种先进技术于一身的特大型现代化高炉。有效容积3200m3,32个风口,环形出铁场设有四个铁口,对称两个铁口出铁,另两个铁口检修备用,日产生铁达7000t以上。引进卢森堡PW公司的第四代水冷传动齿轮箱并罐式无钟炉顶设备,设计顶压可达0.245MPa。矩形陶瓷燃烧器内燃式热风炉可稳定地提供1150℃的风温。5号高炉1991年10月19日点火投产。投产初期高炉强化冶炼水平不高,技术经济指标较差。经过广大技术人员及职工的共同努力,高炉冶炼技术不断进步,从1993年开始进入强化冶炼期,生产水平逐年提高,主要技术经济指标达到并超过了国内先进水平。具体参数见表1。

表1 5号高炉主要技术经济指标

项目 1992年 1993年 1994年 1995年 1996年 1997年 1998年 1999年 20xx年 20xx年

实产生铁,万t 165.9 200.2 213.2 192.2 183.5 233.0 245.2 241.9 245.4 249.7

利用系数,t/(m3?d) 1.424 1.718 1.829 1.812 1.572 2.082 2.189 2.160 2.185 2.229

风量,m3/min 4941 5843 5902 6001 5313 6133 6224 6274 6283 6285

风速,m/s 210 218 221 228 212 232 233 234 236 237

透气性,Q/△P 34.08 37.70 38.08 38.22 36.90 39.06 40.42 40.74 42.17 41.08

顶压,kPa 152 187 191 188 168 199 207 210 208 204

热风温度,℃ 1034 1088 1130 1133 1075 1136 1130 1125 1102 1104

富氧率,% / 0.06 1.09 1.33 1.368 1.213 1.433 1.568 1.520 1.588

入炉焦比,kg/t 491.3 485.9 470.8 477.7 477.0 428.9 412.8 405.9 398.7 396.1

小焦比,kg/t 9.8 17.4 15.5 16.3 22.6 30.0 32.4 29.7 22.8 26.2

煤比,kg/t 31.5 69.4 77.9 82.8 79.5 99.5 108.2 120.0 122.1 123.3

综合焦比,kg/t 540.7 545.9 536.8 550.0 547.3 527.6 523.6 525.6 514.6 515.6

CO利用率,% 40.04 42.08 43.10 42.93 41.33 44.66 44.57 44.25 44.19 44.19

2 主要技术措施

1991年5号高炉投产以后,广大技术人员通过提高精料水平、改进高炉管理和操作方式,提高了高炉利用系数,对炼铁工艺的薄弱环节展开攻关活动,高炉的各项技术经济指标得到了明显的改善,实现了高炉的优质、高产、低耗、长寿。

2.1 贯彻精料方针,优化配矿结构

加强对原燃料的管理,尽可能稳定熟料率在87%以上,使得炉内操作条件得到改善。同时,加强对烧结矿和焦炭的重要参数进行跟踪管理,重视原燃料的筛分整理,并相应地调节高炉的操作参数。入炉烧结矿采用双层筛及梳齿筛过筛,采用高碱度烧结矿+酸性球团矿+块矿的炉料结构。

合理使用进口矿石,逐步提高了入炉品位,入炉矿品位从54%提高到59%。通过多年的摸索,他们逐渐形成了适合5号高炉特点的配料结构(参见表2),既保证了炉渣的脱硫能力,又减少了渣量。炉料结构的稳定、原料质量和品位的提高,为稳定炉况和强化冶炼提供了物质保障。

表2 高炉炉料结构,(%)

炉料 烧结矿 球团矿 进口块矿海南矿 钒钛矿

配比 68~72 16~20 5~12 1~6 1.5~5

2.2 抓好炉况稳定顺行及大喷煤技术

近年来,通过不断加强炉况的维护,在高炉保持长期的稳定顺行方面进行了一些有益的探索。

2.2.1 合理的装料制度

5号高炉开炉初期沿用的钟式布料模式,采用的是单环布料,C76↓O76↓,高炉炉况不稳定,煤气利用率及技术经济指标都很差。为了控制料面形状及调整焦炭平台的宽度,开始采用多环布料方式,首先采用二环布料,之后,又逐渐将布料角位增加到4个、5个,其较典型的布料矩阵为C87654321↓O876341↓,高炉的透气性及稳定性得到改善,煤气利用率及技术经济指标得到提高。为了稳定高炉煤气流,将焦炭布向1号角位,采用中心加焦技术以增加中心部位的焦炭量,使得高炉透气性改善,减少了炉况的波动。1994年10月,进行螺旋布料试验,即C876541432213↓O87653441↓,5号高炉炉况更加稳定,1996年以后又将布矿焦的角位推向9号角位,并保持适宜的O/C分布,较典型的布料矩阵为C987651332223↓O876534332↓,经过改进后的装料制度,得到了良好的'效果,不仅适当抑制了边缘煤气流,同时也适当发展了中心煤气流,生产技术指标进一步得到提高,高炉利用系数突破2.2t/(m3?d),其它主要技术经济指标也得到明显改善,为高炉强化冶炼及富氧喷煤技术提供了有利的条件。

2.2.2 合适的送风制度

调整好送风制度,采用长短风口相结合,保持初始煤气流合理分布,维持合理的回旋区深度,确保上部炉料均衡下降,稳定了高炉传热传质过程。在开炉初,风口进风面积曾达到0.4 ……此处隐藏24838个字……利进行,也为轧钢的提供了原材料,而高炉的副产品也为球团、烧结、铸管、轧钢等提供了源源不断的煤气。

在炼铁外调三位师傅的带领下,开启了我在炼铁厂实习的序幕。在师傅的指导下,明白了调度员每天都做什么工作,什么事该做什么事不该做,遇到问题后怎么样处理。在一个多月的时间我掌握了本岗位的职责,基本上具备了调度员的能力和责任,在工段上遇到不懂的问题及时的向师傅们请教,不碍于面子向员工请教,学习了各种设备的操作规程及熟悉了解工艺流程。

在高炉炼铁生产中,高炉是工艺流程的主体。从其上部装入的铁矿石、燃料和熔剂向下运动,下部鼓入空气。燃烧燃料产生大量的高温,还原性气体向上运动。炉料经过加热、还原、熔化、造渣、渗碳、脱硫等一些列的物理化学过程,最后炉顶部分回收高炉煤气,炉缸生成炉渣和液态生铁的工艺过程。

炼铁实业部现共有四座高炉分别为1#高炉有效容积580m3、2#高炉有效容积120m3 、3#高炉有效容积180m3及4#高炉有效容积380m3 高炉炼铁设备。1#高炉中使用自动化控制系统,为炼铁最大的'高炉日产生铁1700吨以上,日消耗矿石等近3千吨,焦炭等燃料900吨。

一、高炉的主要组成部分

高炉炉壳:炉壳的作用是固定冷却设备,保证高炉砌体牢固,密封炉体,有的还承受炉顶载荷、热应力和内部的煤气压力,有时要抵抗崩料、坐料甚至可能发生的煤气爆炸的突然冲击,因此要有足够的强度。

炉喉:高炉本体的最上部分,呈圆筒形。炉喉既是炉料的加入口,也是煤气的导出口。它对炉料和煤气的上部分布起控制和调节作用。

炉身:高炉铁矿石间接还原的主要区域,呈圆锥台简称圆台形,由上向下逐渐扩大,用以使炉料在遇热发生体积膨胀后不致形成料拱,并减小炉料下降阻找力。炉身角的大小对炉料下降和煤气流分布有很大影响。

炉腰:高炉直径最大的部位。它使炉身和炉腹得以合理过渡。由于在炉腰部位有炉渣形成,并且粘稠的初成渣会使炉料透气性恶化,为减小煤气流的阻力,在渣量大时可适当扩大炉腰直径,但仍要使它和其他部位尺寸保持合适的比例关系,比值以取上限为宜。炉腰高度对高炉冶炼过程影响不很显著,一般只在很小范围内变动。

炉腹:高炉熔化和造渣的主要区段,呈倒锥台形。为适应炉料熔化后体积收缩的特点,其直径自上而下逐渐缩小,形成一定的炉腹角。炉腹的存在,使燃烧带处于合适位置,有利于气流均匀分布。炉腹高度随高炉容积大小而定,但不能过高或过低,一般为3.0~3.6m。炉腹角一般为79~82 ;过大,不利于煤气流分布;过小,则不利于炉料顺行。

炉缸:高炉燃料燃烧、渣铁反应和贮存及排放区域,呈圆筒形。出铁口、渣口和风口都设在炉缸部位,因此它也是承受高温煤气及渣铁物理和化学侵蚀最剧烈的部位,对高炉煤气的初始分布、热制度、生铁质量和品种都有极重要的影响。炉底:高炉炉底砌体不仅要承受炉料、渣液及铁水的静压力,而且受到1400~4600℃的高温、机械和化学侵蚀、其侵蚀程度决定着高炉的一代寿命。只有砌体表面温度降低到它所接触的渣铁凝固温度,并且表面生成渣皮(或铁壳),才能阻止其进一步受到侵蚀,所以必需对炉底进行冷却。通常采用风冷或水冷。目前我国大中型高炉大都采用全碳砖炉底或碳砖和高铝砖综合炉底,大大改善了炉底的散热能力。

炉基:它的作用是将所集中承担的重量按照地层承载能力均匀地传给地层,因而其形状都是向下扩大的。高炉和炉基的总重量常为高炉容积的10~18倍(吨)。炉基不许有不均匀的下沉,一般炉基的倾斜值不大于0.1%~0.5%。高炉炉基应有足够的强度和耐热能力,使其在各种应力作用下不致产生裂缝。炉基常做成圆形或多边形,以减少热应力的不均匀分布。

炉衬:高炉炉衬组成高炉的工作空间,并起到减少高炉热损失、保护炉壳和其它金属结构免受热应力和化学侵蚀的作用。炉衬是用能够抵抗高温作用的耐火材料砌筑而成的。炉衬的损坏受多种因素的影响,各部位工作条件不同,受损坏的机理也不同,因此必须根据部位、冷却和高炉操作等因素,选用不同的耐火材料。

炉喉护板:炉喉在炉料频繁撞击和高温的煤气流冲刷下,工作条件十分恶劣,维护其圆筒形状不被破坏是高炉上部调节的先决条件。为此,在炉喉设置保护板

(钢砖)。小高炉的炉喉保护板可以用铸铁做成开口的匣子形状;大高炉的炉喉护板则用100~150mm厚的铸钢做成。炉喉护板主要有块状、条状和变径几种形式。变径炉喉护板还起着调节炉料和煤气流分布的作用。

二、上料系统的工艺

高炉供上料系统由贮矿槽、贮焦槽、槽下筛分、称量运输和向炉顶上料装置等组成。其作用是将来自原料场,烧结厂及焦化厂的原燃料和冶金辅料,经由贮矿槽、槽下筛分、称量和运输、炉料装入料车或皮带机,最后装入高炉炉顶。随着炼铁技术的发展,中小型高炉的强化、大型高炉和无钟顶的出现,对上料系统设备的作业连续性、自动化控制等提出来更高的要求,以此来保证高炉的正常生产。

三、炼铁生产工艺

炼铁的原料:铁矿石、燃料、熔剂

1、铁矿石 铁都是以化合物的状态存在于自然界中,尤其是以氧化铁的状态存在的量特别多。现在将金特比较重要的铁矿石提出来说明:

赤铁矿也是一种氧化铁的矿石,主要成份为Fe2O3,呈暗红色,比重大约为

5.26,含Fe:47%,含S:6-7%,含SiO2:16-1%8,含CaO:1.5-2.5%,含MgO:0.3-0.9%,含FeO:1-3%。其主要来自金特大选矿厂的自产矿石,主要用于2#,3#高炉日常生产当中,还有烧结与球团的配料中,是最主要的铁矿石。由其本身结构状况的不同又可分成很多类别,如赤色赤铁矿、镜铁矿、云母铁矿、粘土质赤铁等,另外还有铁的硅酸盐矿,硫化铁矿。

2、燃料

炼铁的主要燃料是焦炭。烟煤在隔绝空气的条件下,加热到950-1050℃,经过干燥、热解、熔融、粘结、固化、收缩等阶段最终制成焦炭,这一过程叫高温炼焦(高温干馏)。其作用是熔化炉料并使铁水过热,支撑料柱保持其良好的透气性。因此,铸造焦应具备块度大、反应性低、气孔率小、具有足够的抗冲击破碎强度、灰分和硫分低等特点。炼铁厂高炉所使用的大部分为外购焦:宝丰焦、众泰焦、国际焦、华资以及小部分的自产焦。

3、熔剂

熔剂在冶炼过程中的主要作用有:使还原出来的铁与脉石和灰分实现良好分离,并顺利从炉缸流出,即渣铁分离;生成一定数量和一定物理、化学性能的炉渣,去除有害杂质硫,确保生铁质量。

四、高炉炼铁的工艺流程

炼铁工艺是是将含铁原料(烧结矿、球团矿或铁矿)、燃料(焦炭、煤粉等)及其它辅助原料(石灰石、白云石、锰矿等)按一定比例装入高炉,并由热风炉向高炉内鼓入热风助焦炭燃烧,原料、燃料随着炉内熔炼等过程的进行而下降。在炉料下降和煤气上升过程中,先后发生传热、还原、熔化、脱炭作用而生成生铁,铁矿石原料中的杂质与加入炉内的熔剂相结合而成渣,炉底铁水间断地放出装入铁水罐,送往炼钢厂。同时产生高炉煤气,炉渣两种副产品,高炉渣水淬后全部作为水泥生产原料。

《炼铁实习报告.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式