三角形的内角和教学设计
作为一名教师,常常要根据教学需要编写教学设计,教学设计要遵循教学过程的基本规律,选择教学目标,以解决教什么的问题。那么什么样的教学设计才是好的呢?下面是小编为大家收集的三角形的内角和教学设计,仅供参考,欢迎大家阅读。
三角形的内角和教学设计1教学目标:
1、掌握三角形内角和是180°,并能应用这一规律解决一些实际问题。
2、让学生经历“猜想、动手操作、直观感知、探索、归纳、应用”等知识形成的过程,掌握“转化”的数学思想方法,培养学生动手实践能力,发展学生的空间思维能力。
3、在活动中,让学生体验主动探究数学规律的乐趣,体验数学的价值,激发学生学习数学的热情,同时使学生养成独立思考的好习惯。
教学重点:
让学生经历“三角形内角和是180度”这一知识的形成、发展和应用的全过程。
教学难点:
三角形内角和的探索与验证。
教学准备:
量角器各种类型的三角形(硬的纸板)三角板
教学过程:
一、设疑激趣,导入新课
师:今天老师给大家带来了一位朋友(课件)出示三角形,
师:对于三角形你有哪些认识与了解。
生:三角形有锐角三角形、直角三角形、钝角三角形
生:由三条线段围成的平面图形叫三角形。
师:介绍内角、内角和
三角形中每两条边组成的角叫做三角形的内角。
师:三角形有几个内角。
生:三个。
师:这三个角的和,就叫做三角形的内角和。你知道三角形内角和是多少度?
生1:我通过直角三角板知道的
生2:我通过长方形中四个角都是直角,是360度,三角形是长方形的一半,所以是180度
生3:我预习了,三角形内角和就是180度)
师:是不是向他们说的一样,所有的三角形内角和都是180度呢?
二、自主探索,进行验证
师:你打算怎样验证呢?
生1用量角器量出每个角的度数,再加一加看看是不是180度生2:把三角形撕下来
师:怎么撕?象这样撕吗?(作乱撕状),能说的详细些具体些吗?生2:(补充),把三个角撕下来,拼在一起,看能不能拼成一个平角
生3:把三个角顺次画下来也可以
生4:拼一拼的方法
师:好!同学们想出了这么多办法,下面就用你喜欢的方法验证师:CAI多媒体课件展示操作要求:
合作探究:
1、每四人一组,每组至少选两个三角形,用你喜欢的方法验证
2、看那个小组验证的方法新、方法多
师:在巡视,并进行个别操作指导
三、交流探索的方法和结果
孩子们探索的方法可能有三个:
生1:一是用量角器量各个角,然后再算出三角形中三个角的度数和,用这种方法求的结果可能是180度也可能比180度小一些,也可能比180度大一些。
生2:二是用转化法,把三角形中三个角剪下来,拼在一起成为一个平角,由此得出三角形中三个角的和是180度。
生3:三是折一折,把三个角折在一起,折在一起成为一个平角,由此得出三角形中三个角的和是180度。
四、归纳总结,体验成功
师:孩子们,三角形中三个角的度数和到底是多少度呢?
生:180度。
五、拓展应用
1、基础练习
2、等边三角形、等腰三角形、直角三角形
六、课堂小结
谈一谈自己的学习收获。
三角形的内角和教学设计2一、教材分析
“三角形内角和”的度数推理是三角形中的一个重要环节,也是“空间与图形”领域中的重要内容之一,为学生进一步理解三角形三个角、三条边之间的关系打下基础。本节课首先让学生对三角形的特点进行复习,随后教材中创设了一个有趣的动态情境,导入了新课,激发学生的兴趣,明确“内角和”的含义,然后引导学生探索三角形内角和等于多少度,可以采用不同的方法验证,教学中安排了3个活动,通过这3个活动体验“三角形内角和”的性质和性质的探索过程。
二、学情分析
有的学生可能从各种渠道已经对“三角形内角和是180°”有所了解,所以本课的重点是通过数学活动体验,理解为什么三角形的内角和是180°,使学生对这个知识的掌握更深刻。经过不断的课改实验,孩子们已经有了一定的自主探究、合作交流的能力。他们喜欢在实践中感悟,在实践中发表自己的见解,对数学产生了浓厚的兴趣。
1.知识方面:学生已经掌握了三角形的概念、分类,熟悉了钝角、直角、锐角、平角这些角的知识。
2.能力方面:已具备了初步的动手操作能力和探究能力,并且能够进行简单的计算机操作。
三、教学方法
渗透猜想——验证——结论——应用——拓展
教学目标:
1、通过直观操作的方法,探索并发现三角形三个内角和等于180度,在实践活动中,体验探索的过程和方法
2、能应用三角形内角和的性质解决一些简单的问题。
教学重点:
经历三角形的内角和是180°这一知识的形成、发展和应用的全过程,会应用三角形的内角和解决实际问题;
教学难点:
是探索和验证性质的过程。
四、教具学具
三角板、量角器、剪刀、白纸
五、教学过程
(一)、激趣导入,揭示课题
1、师:同学们,猜猜它是谁?
形状似座山,稳定性能坚,三竿首尾连,学问不简单(打一几何图形)三角形(板书)我们已经认识了什么是三角形,谁能说出三角形有什么特点?生回答。(互相补充) (课件演示三条线段围成三角形的过程)
三条线段围成三角形后,在三角形内形成了三个角,(课件分别闪烁三个角及它的弧线),我们把三角形里面的这三个角分别叫做三角形的内角。
2、现在,我们来玩一个跟三角形的角有关的游戏。只要大家说出三角形任意两个角的度数,老师就能猜出第三个角,你们相信吗?
要求每个4人小组拿出本组预先准备的学具袋。(内含四个不同的三角形,包括直角、锐角和钝角三角形至少各一个,且要求大小不一。)
3、活动——量一量:每人任意拿出一个自己带来的三角形,用量角器量出三角形中三个角的度数,并写在三角形中。(独立完成,非小组合作。)
然后分别请几个学生报出不同三角形的两个角的度数,教师当即说出第三个角的度数。(事先向学生说明误差仅为3、4度左右。)
你们知道老师是怎么猜出来的吗?
到底它 ……此处隐藏23468个字……)
(2)锐角三角形任意两个内角的和大于直角。( )
(3)有一个角是60°的等腰三角形不一定是等边三角形。( )
3、下面是两块三角形的玻璃打碎后留下的残片,你知道它们原来各是什么三角形吗?
( ) ( )
五、课堂小结,分享提升
1、谈谈这节课你有什么收获?
2、课后思考题
三角形的内角和是180°,那长方形、正方形的内角和呢?(根据三角形的内角和是180°求,参考课本88页第12题,完成89页16题)
板书设计
三角形的内角和教学设计15课题
三角形的内角和
手 记
教学目标
1.让学生亲自动手,通过量、剪、拼等活动发现、证实三角形内角和是180°,并会应用这一知识解决生活中简单的实际问题。
2.在学生在动手获取知识的过程中,培养学生的实践能力,并通过动手操作把三角形内角和转化为平角的探究活动,向学生渗透“转化”数学思想。
3.使学生体验成功的喜悦,激发学生主动学习数学的兴趣。
重点难点
重点:让学生经历“三角形内角和是180°”这一知识的形成、发展和应用过程。
难点:探索、验证三角形内角和是180°的过程。
过程
资源
体验目标
“学”与“教”
创设问题情境
课件出示:两个三角板
遵循由特殊到一般的规律进行探究,引发学生的猜想后,引导学生探讨所有的三角形的内角和是不是也是180°。
这是同学们熟悉的三角尺,请同学们说一说这两个三角尺的三个内角分别是多少度?
生: 45°、90°、45°。
生: 30°、90°、60°。
师:仔细观察,算一算这两个三角形的内角和是多少度?
生:90°+45°+45°=180°。
生:90°+60°+30°=180°。
师:通过刚才的算一算,我们得到这两个三角形的内角和是180°,由此你想到了什么?
生:直角三角形内角和是180°,锐角三角形、钝角三角形内角和也是180°。
师:这只是我们的一种猜想,三角形的内角和是否真的等于180°,还需要我们去验证。
构建
模型
每个组准备六个三角形(锐角三角形2个、直角三角形2个、钝角三角形2个)
课件
学生自己剪的一个任意三角形
大胆放手让学生通过有层次的自主操作活动,帮助学生结合已有的知识经验,探究验证三角形内角和的不同方法。
让学生在经历“提出猜想—实验验证—得出结论”中感悟、体验知识的形成过程,将“三角形内角和是180°”一点一滴,浸入学生大脑,融入已有认知结构。
这一系列活动同时还潜移默化地向学生渗透了“转化”的数学思想,为后继学习奠定了必要的基础。
师:之前老师为每个同学准备了①-⑥六个三角形,下面请组长分发给每个三角形,拿到手后,先别着急,先想一想你准备用什么方法去验证三角形内角和?
学生动手操作验证
师:汇报时,请先说一说是几号三角形?然后说一说这个三角形是什么三角形?
学生汇报:
生1:③号三角形是直角三角形,内角和是180°。
生2:②号三角形是锐角三角形,内角和是180°。
生3:⑤号三角形是钝角三角形,内角和是180°。
生4:④号三角形是直角三角形,内角和是180°。
生5:①号三角形是钝角三角形,内角和是180°。
生6:⑥号三角形是锐角三角形,内角和是180°。
师:除了量的方法外,还有其他方法验证三角形内角和吗?
生1:分别剪下三角形三个角拼成平角,平角是180°,所以推理得出三角形内角和是180°。
生2:分别撕下三角形三个角拼成平角,平角是180°,所以推理得出三角形内角和是180°。
生3:把三角形的三个角折成平角,平角是180°,所以推理得出三角形内角和是180°。
这些方法都验证了:三角形的内角和是180°。
师:观察这些三角形的内角和是多少度?这些三角形的内角和都是180°,这是不是老师故意安排好的呢?
师:有没有人质疑,用什么方法验证?
生用自己剪的任意三角形再次验证三角形内角和是否180°。
生:得出内角和还是180°。
师:不管是老师提供的三角形,还是你们自己准备的三角形,通过我们的算一算、拼一拼、折一折,都得出了三角形的内角和是180°。
师:我们已经学习了三角形的分类,三角形可以分成锐角三角形、直角三角形、钝角三角形。这些三角形的内角和是180°,我们能把它们概括成一句话吗?
生:三角形的内角和是180°。
师:看来我们的猜想是正确的。
师:早在20xx多年前著名数学家欧几里得就已经得到这个结论,到了初中以后同学们还会用更加严密的方法证明三角形的内角和是180°。
解释
运用拓展
课件
正方形纸
让学生更深的对所学的新知加以巩固,从而促使学生综合运用知识,解决问题的能力。同时在练习中发展学生的观察、归纳、概括能力和初步的空间想象力。
1.∠1=40°,∠2=48°,求∠3有多少度?
2.算出下面三角形∠3的度数。
⑴∠1=42°,∠2=38°,∠3=?
⑵∠1=28°,∠2=62°,∠3=?
⑶∠1=80°,∠2=56°,∠3=?
师:你是怎样算的?这三个三角形各是什么三角形?
提问:在一个三角形中最多有几个钝角?
在一个三角形中最多有几个直角?
3.游戏:将准备的正方形纸对折成一个三角形?
师:这个三角形的内角和是多少度?再对折一次,现在内角和是多少度?如果继续折下去,越折越小,三角形的内角和会是多少度?
说明:三角形大小变了,内角和不变。
4.有两个完全一样的三角尺拼成一个三角形,这个三角形的内角和是多少度?
说明:三角形形状变了,内角和不变。
5.根据所学知识,你能想办法求出下面图形的内角和吗?
板书
设计
三角形内角和
①号 钝角三角形 内角和180°
②号 锐角三角形 内角和180°
三角形内角和是180°
③号 直角三角形 内角和180°
④号 直角三角形 内角和180°
⑤号 钝角三角形 内角和180°
⑥号 锐角三角形 内角和180°
学具教具准备
课件三角形纸片量角器正方形纸